Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib

نویسندگان

  • Martin Klammer
  • J. Nikolaj Dybowski
  • Daniel Hoffmann
  • Christoph Schaab
  • Andrew R. Dalby
چکیده

Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin β4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection.

Dasatinib is a multitargeted kinase inhibitor that was recently approved for the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. It is also in clinical trials for treating patients with solid tumors. The identification of molecular markers predictive of response to dasatinib could assist...

متن کامل

Solving ‎‎‎Multi-objective Optimal Control Problems of chemical ‎processes ‎using ‎Hybrid ‎Evolutionary ‎Algorithm

Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier‎. ‎This paper applies an evolutionary optimization scheme‎, ‎inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...

متن کامل

Patient Selection Sensitivity in Solid Tumors to Dasatinib: Rationale for Identification of Candidate Molecular Markers Predicting

Dasatinib is a multitargeted kinase inhibitor that was recently approved for the treatment of chronic myelogenous leukemia and Philadelphia chromosome–positive acute lymphoblastic leukemia with resistance or intolerance to prior therapy. It is also in clinical trials for treating patients with solid tumors. The identification of molecular markers predictive of response to dasatinib could assist...

متن کامل

Analysis of Response Robustness for a Multi-Objective Mathematical Model of Dynamic Cellular Manufacturing

The multi-objective optimization problem is the main purpose of generating an optimal set of targets known as Pareto optimal frontier to be provided the ultimate decision-makers. The final selection of point of Pareto frontier is usually made only based on the goals presented in the mathematical model to implement the considered system by the decision-makers. In this paper, a mathematical model...

متن کامل

Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control

This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015